Table 1-1. NAAMES science traceability matrix, linking mission science goals and objectives to measurement, instrument, and investigation requirement. | investigation requirement. | | | Investigation Functional | |---|---|--|--| | Science Objectives & Questions | Scientific Measurement Requirements | Instrument Functional Requirements | Requirements | | Science Objectives: Characterize plankton ecosystem properties during primary phases of the annual cycle in the North Atlantic and their dependence on environmental forcings | ecosystem properties through the water column | Autonomous measurements of
water column optical and physical
properties at 5 m vertical resolution
and sustained over annual cycle Ship-based ecosystem and optical | Four field campaigns
targeting biomass
increasing/decreasing
phases and transition periods
of the annual plankton cycle | | Determine how primary phases of the
North Atlantic annual plankton cycle
interact to recreate each year conditions
for an annual bloom | at distributed locations in N. Atlantic In situ measurements of mixed layer plankton concentrations, species composition, POC, cDOM, and phytoplankton growth, accumulation, total loss, and grazing loss rates UV-to-NIR airborne radiometric measurements | temporal resolutions and uncertainties specified in Table 2-2 3. Ship- and aircraft-based in situ | Co-located ship and airborne
measurements and long-
range, transport-scale
airborne measurements. Field measurements of the
subtropical to subarctic | | Question #1: How do environmentally-driven changes in phytoplankton growth rate and seasonal changes in ecosystem interactions create the spring bloom, and what does the relative importance of these two processes imply about future change? | linking local-scale analytical data (item 3 above) to satellite remote sensing resolution 5. Field measurements in items 3 and 4 above conducted over a wide dynamic range in ecosystem properties and encompassing differences in seasonal timing of ecosystem | the size range, temporal resolutions, and uncertainties specified in Table 2-3 4. Passive airborne remote sensing of mixed layer plankton and cDOM properties at spatial resolutions and | gradient in ecosystem and aerosol properties 4. Autonomous sensor deployment along latitudinal gradient to sustain in situ observations of annual cycle | | Question #2: How are seasonal changes in community composition linked to bloom formation? Science Objective: | annual cycle events 6. Field measurements in items 3 and 4 above conducted during contrasting stages of the annual plankton cycle Ecosystem and optical properties as in 1-4 above | uncertainties specified in Table 2-1 5. Active airborne remote sensing of subsurface particles at spatial resolutions and uncertainties specified in Table 2-1 | Airborne transects including (1) long-range low-altitude (below-to-above cloud) sampling (Azores to ship), (2) match-up with ship samples, | | Resolve how remote marine aerosols and
boundary layer clouds are influenced by
plankton ecosystems in the North Atlantic <i>Question #3: How do ocean-ecosystem</i> | plus the following with spatial-temporal coverage as in 5-6: Measurements of surface air concentrations of aerosols (e.g., sea salt, POA, SOA) and trace gases (e.g., VOCs, DMS) | Passive airborne remote sensing of column-averaged aerosol properties from surface to aircraft level at spatial resolutions and uncertainties specified in Table 2-1 | (3) 200 km along forecasted
ship transect, (4) vertical
profile sampling of lower
troposphere and (5) long-
range measurements at high- | | emissions alter remote marine aerosol burden, spatial distribution, and properties? | Measurements of aerosol concentration, size distribution, composition, optical properties and CCN activity below, above, and between clouds In situ and remote sensing measurements of cloud droplet number density, size, and liquid | 7. Active airborne remote sensing of | altitude (ship to Azores) 6. Basin-scale retrievals of aerosol and ecosystem properties from existing/upcoming satellites | | and, in turn, cloud microphysical properties? | water content 4. In situ measurements of seawater volatile organics and their production and consumption rates | 8. Active and passive airborne remote | | | | Continuous, mission-long record of passive-
sensor, satellite-derived aerosol and cloud
properties | spectral aerosol optical depth
above the aircraft at spatial
resolutions and uncertainties
specified in Table 2-1 | ecosystem variability, (3) forecast change in ecosystem properties, with relevance to aerosols |